Copb2 is essential for embryogenesis and hypomorphic mutations cause human microcephaly.

نویسندگان

  • Andrew DiStasio
  • Ashley Driver
  • Kristen Sund
  • Milene Donlin
  • Ranjith M Muraleedharan
  • Shabnam Pooya
  • Beth Kline-Fath
  • Kenneth M Kaufman
  • Cynthia A Prows
  • Elizabeth Schorry
  • Biplab Dasgupta
  • Rolf W Stottmann
چکیده

Primary microcephaly is a congenital brain malformation characterized by a head circumference less than three standard deviations below the mean for age and sex and results in moderate to severe mental deficiencies and decreased lifespan. We recently studied two children with primary microcephaly in an otherwise unaffected family. Exome sequencing identified an autosomal recessive mutation leading to an amino acid substitution in a WD40 domain of the highly conserved Coatomer Protein Complex, Subunit Beta 2 (COPB2). To study the role of Copb2 in neural development, we utilized genome-editing technology to generate an allelic series in the mouse. Two independent null alleles revealed that Copb2 is essential for early stages of embryogenesis. Mice homozygous for the patient variant (Copb2R254C/R254C) appear to have a grossly normal phenotype, likely due to differences in corticogenesis between the two species. Strikingly, mice heterozygous for the patient mutation and a null allele (Copb2R254C/Zfn) show a severe perinatal phenotype including low neonatal weight, significantly increased apoptosis in the brain, and death within the first week of life. Immunostaining of the Copb2R254C/Zfnbrain revealed a reduction in layer V (CTIP2+) neurons, while the overall cell density of the cortex is unchanged. Moreover, neurospheres derived from animals with Copb2 variants grew less than control. These results identify a general requirement for COPB2 in embryogenesis and a specific role in corticogenesis. We further demonstrate the utility of CRISPR-Cas9 generated mouse models in the study of potential pathogenicity of variants of potential clinical interest.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutations in genes encoding condensin complex proteins cause microcephaly through decatenation failure at mitosis.

Compaction of chromosomes is essential for accurate segregation of the genome during mitosis. In vertebrates, two condensin complexes ensure timely chromosome condensation, sister chromatid disentanglement, and maintenance of mitotic chromosome structure. Here, we report that biallelic mutations in NCAPD2, NCAPH, or NCAPD3, encoding subunits of these complexes, cause microcephaly. In addition, ...

متن کامل

Human microcephaly ASPM protein is a spindle pole-focusing factor

Nonsense mutations in the ASPM gene have been most frequently identified among familial microcephaly patients. Depletion of ASPM causes spindle pole unfocusing during mitosis in multiple cell types of Drosophila. However, it remains unknown whether human ASPM has a similar function. Here, using CRISPR-based gene knockout (KO) and RNA interference combined with chemical inhibitors and auxin-indu...

متن کامل

Deficiency of Asparagine Synthetase Causes Congenital Microcephaly and a Progressive Form of Encephalopathy

We analyzed four families that presented with a similar condition characterized by congenital microcephaly, intellectual disability, progressive cerebral atrophy, and intractable seizures. We show that recessive mutations in the ASNS gene are responsible for this syndrome. Two of the identified missense mutations dramatically reduce ASNS protein abundance, suggesting that the mutations cause lo...

متن کامل

Protein-truncating mutations in ASPM cause variable reduction in brain size.

Mutations in the ASPM gene at the MCPH5 locus are expected to be the most common cause of human autosomal recessive primary microcephaly (MCPH), a condition in which there is a failure of normal fetal brain development, resulting in congenital microcephaly and mental retardation. We have performed the first comprehensive mutation screen of the 10.4-kb ASPM gene, identifying all 19 mutations in ...

متن کامل

Progressive microcephaly is caused by compound-heterozygous mutations in QARS.

Mutations in QARS, encoding glutaminyl-tRNA synthetase, cause progressive microcephaly, cerebral-cerebellar atrophy, and intractable seizures Zhang et al. (2014) The American Journal of Human Genetics;94(4):547-558.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human molecular genetics

دوره 26 24  شماره 

صفحات  -

تاریخ انتشار 2017